DIAGNÓSTICO DA SÍNDROME DO OVERTRAINING

DIAGNOSIS OF OVERTRAINING SYNDROME

DIAGNÓSTICO DEL SÍNDROME DEL OVERTRAINING

ARTIGOS DE REVISÃO REVIEW ARTICLES ARTÍCULOS DE REVISIÓN

Fellipe Pinheiro Savioli¹ (Médico)

Thairon Mesquita Medeiros² (Médico)

Sergio Luiz Camara Jr³ (Médico)

Elizabeth Peres Biruel¹ (Historiadora e Bibliotecária) Carlos Vicente Andreoli⁴ (Médico)

 Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil.
Hospital do Trauma Ortopédico, São Luiz, MA, Brasil.
Hospital Evangélico de Curitiba, Curitiba, PR, Brasil.
Universidade Federal de São Paulo (Unifesp), Centro de Traumatologia do Esporte, São Paulo, SP, Brasil.

Correspondência: Rua Oscar Freire, 1500, ap 142, São Paulo, SP, Brasil. 05409-010 fellipesavioli@gmail.com or fpsavioli@yahoo.com.br

RESUMO

A síndrome do overtraining (SO) é uma afecção associada à diminuição da performance esportiva decorrente do aumento do volume e/ou intensidade de atividades físicas sem repouso adequado e/ou de dieta inadequada. É comum encontrarmos alterações hormonais, nutricionais, emocionais, musculares, imunológicas e neurológicas. A epidemiologia é bastante diversa, acometendo ambos os sexos em diferentes faixas etárias. O diagnóstico ainda é um desafio, devido à similaridade com diferentes doenças. A falta de sintomas específicos exige investigação criteriosa em todos os atletas, muitas vezes multidisciplinar. A SO pode ter repercussão importante na performance esportiva e também na qualidade de vida do atleta. Métodos: Trata-se de um mapeamento da literatura científica no rigor da Revisão Sistemática. As bases de dados pesquisadas foram: MEDLINE e Literatura Latino-Americana e do Caribe em Ciências da Saúde – LILACS e EMBASE, além de documentos impressos. Foram incluídos estudos que descreveram a SO, priorizando os artigos que relatavam a eficácia dos diferentes métodos diagnósticos, sejam eles clínicos, laboratoriais ou de imagem. Resultados: Foram encontrados 83 artigos, dos quais 30 trabalhos foram selecionados. Conclusão: O único sintoma presente em todas as diferentes formas de manifestação de SO é a perda de desempenho. O diagnóstico ainda é um grande desafio, pela falta de exames específicos. Porém, alguns exames que avaliam nível de estresse oxidativo parecem ser promissores, mesmo não sendo específicos. *Estudo de revisão*.

Descritores: Esgotamento profissional.

ABSTRACT

Overtraining syndrome (OTS) is a condition associated with diminished sports performance due to an increase in the volume and/or intensity of physical activity without adequate rest, and/or due to an inadequate diet. The condition often involves hormonal, nutritional, emotional, muscle, immune and neurological imbalances. Epidemiology varies considerably, affecting both sexes in different age groups. Diagnosis is still a challenge, as the syndrome resembles different diseases. The lack of specific symptoms requires a meticulous investigation in all athletes, which is often multidisciplinary. OTS can have an important repercussion on sports performance and on the quality of life of athletes. Methods: This is a mapping of scientific literature along the lines of the Systemic Review. The databases investigated were: MEDLINE and Latin American and Caribbean Health Sciences Literature – LILACS and EMBASE, in addition to printed documents. Studies describing OTS were included, prioritizing articles that report the efficacy of the different diagnostic methods, be they clinical, laboratory, or imaging. Results: We found 83 articles, of which 30 were selected. Conclusion: The only symptom present in all the different forms of manifestation of OTS is loss of performance. However, some tests assessing oxidative stress levels seem promising, even though they are not specific. **Revision article.**

Keywords: Burnout, professional.

RESUMEN

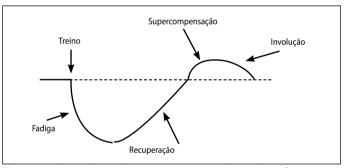
El síndrome de Overtraining (SO) es una condición de rendimiento deportivo disminuido debido a un aumento en el volumen y/o intensidad del ejercicio sin un descanso adecuado o debido a una ingesta de energía inadecuada. Es común encontrar desequilibrios hormonales, nutricionales, emocionales, musculares, inmunológicos y neurológicos. Se ve con mayor frecuencia en atletas de resistencia como nadadores, ciclistas, corredores y triatletas. Se estima que la prevalencia del síndrome de overtraining (SO) es aproximadamente del 30% para los atletas de resistencia no elite, y del 60% para los atletas de elite. Por lo tanto, debido a la gravedad de los síntomas y al deterioro de la calidad de vida, se debe realizar una investigación adecuada en todos los atletas de Endurances. Sin embargo, un diagnóstico preciso puede ser un desafío debido a su similitud con otras afecciones, tales como: broncoespasmo inducido por ejercicio, mononucleosis infecciosa, sueño insuficiente, anemia, ansiedad de rendimiento, ingestión no adecuada de carbohidratos o proteínas, infección de las vías respiratorias superiores, trastorno del estado de ánimo, estrés psicosocial, abstinencia de cafeína o alergias ambientales. El objetivo de este trabajo es evaluar todo tipo de diagnóstico (clínico, de laboratorio o de imagen) para permitir un diagnóstico preciso para evitar complicaciones del SO. **Artículo de revisión**

Descriptores: Agotamiento Profesional.

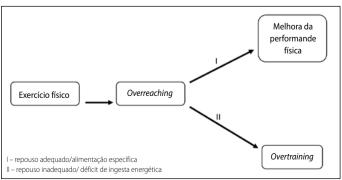
DOI: http://dx.doi.org/10.1590/1517-869220182405185927

Artigo recebido em 28/09/2017 aprovado em 24/05/2018

INTRODUÇÃO


Atletas profissionais são exigidos todos os dias ao máximo do seu limite físico. A necessidade de bons resultados vem de várias partes: do próprio atleta, treinador, clube que representa, patrocinadores e algumas vezes da própria família. Se a periodização do seu treinamento não for bem realizada, respeitando volume e intensidade, juntamente com nutrição balanceada e repouso adequado, o atleta pode apresentar a síndrome do overtraining (SO). Hoje, a SO não é uma exclusividade dos atletas profissionais; muitos atletas amadores, na busca por uma melhor colocação em competições ou por vagas em campeonatos mundiais de diferentes modalidades, submetem-se à situações físicas extenuantes que podem levar a um desequilíbrio metabólico.

Embora existam muitas definições diferentes a respeito de SO e overreaching (OR), utilizaremos a mais utilizada, de Kreider et al.¹


Overreaching – atividade física seguida de pequeno período de diminuição da performance, acompanhada ou não de alterações fisiológicas, com recuperação/melhora da performance depois de alguns dias. Alguns autores subdividem o overreaching em funcional e não funcional. O overreaching funcional ocorre quando um período adequado de repouso foi realizado, atingindo a supercompensação, que é a melhora da performance. No overreaching não funcional há perda ou estagnação da performance, perdurando algumas semanas ou meses. Nesse último caso, alterações hormonais frequentemente estão presentes.

Overtraining – atividade física seguida de um longo período de diminuição da performance, acompanhada ou não de alterações fisiológicas, com recuperação/melhora da performance depois de algumas semanas ou meses. (Figuras 1 e 2)

Para muitos autores, a diferença entre OR e SO esta no tempo de recuperação necessário para conseguir atingir novamente a performance prévia.^{2,3}

Figura 1. Após a realização de um treinamento, o atleta perde performance por um período de tempo, devendo ter uma alimentação e repouso adequado para realizar a sua recuperação e consequente supercompensação, que é o período de melhora da performance e quando um novo treinamento deve ser realizado. Se não houver treinamento no período de supercompensação, não haverá melhora da performance e consequente involução. Se houver treinamento no período de recuperação, haverá piora da performance.

Figura 2. havendo repouso e alimentação adequada ao treinamento realizado (volume e intensidade), há melhora da performance no treino seguinte.

Incidência

Artigos sobre a incidência da síndrome do overtraining (SO) são limitados e conflitantes. Alguns autores incluem casos de overreaching funcional como se fossem overreaching não funcional ou SO.

Matos et al observou que um terço dos atletas jovens ingleses com média de 15,1 anos de idade já apresentou overtraining ou overreaching não funcional.⁴ Koutedakis et al encontrou uma incidência maior da SO em homens do que em mulheres, principalmente no período de pré-competição.⁵ Halson et al também encontrou incidência de SO maior em homens,³ enquanto que Kreher et al observou mais mulheres acometidas.⁶

Além disso, estudos mostram que a recorrência da SO é bastante alta. Um estudo conduzido por Raglin et al demonstrou que 91% dos nadadores universitários diagnosticado com SO, voltaram a apresentar o mesmo quadro nos 03 anos seguintes.⁷

Fisiopatologia

Muitas hipóteses foram propostas para a SO, todas contendo pontos fortes e de argumentações. As principais são as hipóteses: do glicogênio, da fadiga central ou do BCAA (aminioácidos de cadeia ramificada), da glutamina, do estresse oxidativo, do sistema nervoso autonômico, do eixo hipotalâmico e das citocinas.

Hipótese do glicogênio: uma concentração muscular diminuída de glicogênio não fornecerá a energia suficiente para e realização de um treinamento com grande intensidade. A diminuição do estoque de glicogênio aumentará os processos oxidativos de outros substratos energéticos, diminuindo a concentração dos aminoácidos de cadeia ramificada, que estão envolvidos na síntese de neurotransmissores centrais. Atletas que consomem quantidades inadequadas de carboidratos têm maior chance de entrarem em fadiga; porém muitas vezes eles não apresentam quando clínico compatível com a SO. Além disso, alguns atletas que estão com a SO, apresentam ingesta adequada de carboidratos. Por esses motivos, alguns autores contestam essa hipótese.

Hipótese da fadiga central ou do BCAA: o triptofano, um aminoácido essencial, precursor da serotonina, compete diretamente com os amoniácidos de cadeia ramificada (leucina, isoleucina e valina) na via da barreira hemato-cefálica. Exercícios físicos diminuem a quantidade de BCAA, devido à sua oxidação, permitindo maior entrada de triptofano no cérebro, elevando muito a concentração de serotonina. Esse aumento extremo de serotonina induz um estado de fadiga, além de alteração do humor e distúrbios do sono. Alguns atletas que fizeram uso de medicação inibidora da recaptação de serotonina sentiram fadiga e queda do rendimento. ¹⁰ Trata-se porém de uma hipótese muito criticado por muitos autores, pois não existem modos de se quantificar alterações do humor e fadiga, além da dificuldade de se distinguir os efeitos da serotonina central e periférica.

Hipótese da glutamina: a atividade física aumenta a taxa de oxidação de glutamina. Devido à sua depleção, o sistema imunológico pode apresentar alteração do seu funcionamento, deixando o atleta mais susceptível às infecções, principalmente a do trato respiratório superior, que tem uma associação muito próxima com a SO.¹¹ A crítica para essa hipótese é a de que o nível de glutamina sérico não corresponde à glutamina biodisponível no organismo e que, essa situação da depleção da glutamina não seria responsável por uma série de outros sintomas referidos pelos atletas com SO.¹²

Hipótese do Estresse Oxidativo: com o aumento do volume e intensidade das atividades físicas, há aumento na produção de radicais livres, gerando lesão tecidual e fadiga. O estado inflamatório que alguns atletas apresentam pode estar relacionado com o desbalanço na relação radicais livres/antioxidantes. Atletas em overtraining geralmente apresentam alterações na avaliação sérica das proteínas carboniladas, nitrotirosina e malondialdeído. As proteínas carboniladas e a nitrotirosina são um indicador de oxidação proteica, enquanto que o malondialdeido é um indicador de peroxidação lipídica.

Hipótese do Sistema Nervoso Autonômico; autores sugerem que exista um predomínio do sistema nervoso parassimpático sobre o simpático, com diminuição da atividade adrenal associada a níveis aumentados de ACTH. Porém, aferições de catecolaminas, especialmente a noite, vão contra essa teoria em alguns atletas.

Hipótese do eixo-hipotalâmico: uma alteração do eixo hipotalâmico, mais precisamente nos eixos hipotálamo-pituitária-adrenal e hipotálamo-pituitária-gonadal,^{5,6,13} causando alterações no nível de cortisol, testosterona, hormônio adrenocorticotrófico (ACTH) e consequentemente estrogênio. Essas alterações podem explicar o aumento da incidência de infecções no trato respiratório superior e diminuição de provas inflamatórias. Uma das hipóteses é a de que o exercício prolongado pode causar uma espécie de resistência ao ACTH nas glândulas supra-renais, causando diminuição do cortisol sérico e aumento do nível de ACTH num primeiro momento, podendo chegar a níveis normais com o decorrer do tempo. Essa situação pode ser confundida com a doença de Addison.¹⁴ Artigos descrevem que atletas que permaneceram muito tempo em SO, desenvolveram quadros clínicos similares à doença de Addison devido a não responsividade das adrenais, mesmo após pararem de treinar.

Hipótese da Citocinas: o aumento na produção de citocinas inflamatórias, dentre elas a IL-1β, IL-6 (que em algumas situações pode não ser inflamatória), IL-10 e fator de necrose tumoral alfa (TNF-α) em atletas de endurance em repouso podem ser um indicador de overtraining. Porém não temos estudos com longo tempo de avaliação e encontramos atletas com SO com níveis normais de citocinas.

Quadro Clínico

O aumento da frequência cardíaca em repouso foi descrito como um sinal da SO.^{15,16} Porém um grande número de artigos não confirmou essa alteração.^{17,18,19} Trata-se de um sinal muito inespecífico, pois pode representar alguma forma de infecção. Além disso, alguns autores subclassificam a SO em simpática e parassimpática, sendo portanto um sinal válido para apenas uma das formas. Outros autores acreditam que a SO simpática é um estágio prévio à SO parassimpática, sendo composto portanto de um período inicial com grande produção de cortisol e catecolaminas, causando alterações do sono e maior probabilidade de infecções, seguida de um período de resistência a todas essas alterações bioquímicas. Se a fase parassimpática for atingida, o tratamento torna-se mais difícil e prolongado.

Heikki Ruscko descreveu um teste para diagnóstico de overtraining baseado na frequência cardíaca (FC) em repouso. Afere-se a FC do paciente em posição de decúbito dorsal horizontal. Depois é solicitado para o paciente levantar-se, e afere-se novamente a FC aos 15, 90 e 120 segundos; se houver aumento de pelo menos 10 batimentos na FC, é considerado SO.

Uma outra possibilidade é a avaliação da performance do atleta com a escala de Borg. Deve-se simular treinos de intensidade progressiva, correspondente à performance prévia do atleta quando o mesmo não presentava nenhum tipo de sintoma, e pedir um relato do nível de esforço sentido, comparando-os. Para aumentar a confiabilidade desse teste, pode-se associar a dosagem de lactato no final do exame.²⁰

Alterações do humor frequentemente fazem parte da SO. Normalmente ocorrem antes da perda de performance. Quadro de adinamia pode estar presente, e alguns atletas podem apresentar sintomas parecidos aos de quadros depressivos. Alterações do sono frequentemente estão presentes.²¹

Portanto, nenhum sinal ou sintoma é específico da SO, e uma investigação ampla, muitas vezes realizada por diferentes especialidades médicas, deverá ser realizada para excluir outras condições que apresentam quando clínico semelhante à SO. Dentre eles estão: asma, doenças da

tireoide, doenças psiquiátricas, alterações da adrenal, diabetes, anemia, infecções, ingesta calórica inadequada, neoplasias, doenças reumáticas, doenças renais, doenças hepáticas entre outras.

Alterações Bioquímicas/Hormonais

Alterações no hemograma, proteína-C reativa (PCR), velocidade de hemossedimentação (VHS), creatinofosfoquinase (CK), ureia, creatinina, enzimas hepáticas, glicose, ferritina, sódio e potássio, não são capazes de diagnosticar um quadro de SO, mas irão trazer informações importantes do estado de saúde atual do atleta e excluir outros diagnósticos. Sorologias podem ser necessárias de acordo com a história do atleta.

A relação testosterona/cortisol em repouso é utilizada por muitos médicos como um indicador do estado de overtraining. Essa relação diminui o seu valor quando há aumento do volume e/ou intensidade do treinamento, indicando portanto um estado fisiológico atual, não podendo ser utilizada como diagnóstico de SO.

Muitos autores concordam que a SO é um problema de adaptação de todos os eixos hipotalâmicos, principalmente o hipotalâmico-pituitário-adrenal. ^{22,23,24,25} Porém, testes como cortisol sérico matinal e concentração de cortisol na urina 24hrs não são exames que possam trazer informações importantes sobre a SO. ^{26,27} Também não há consenso sobre os exames envolvendo as catecolaminas, seja ela aferida no plasma, ou qualquer tipo de aferição urinária. ²⁸

A dosagem salivar de imunoglobulina A não se mostrou efetiva para o diagnóstico de SO. Pode estar alterada em casos de infecção do trato respiratório superior, uma condição frequente em atletas.²⁹

Outros exames laboratoriais parecem ser promissores, como a relação glutationa reduzida/oxidada. A glutationa é um anti-oxidante endógeno, que neutraliza radicais livres, produzidos em sua grande maioria pelas mitocôndrias. Esse exame indica a atual saúde celular da pessoa. Pode estar alterado em doenças neurodegenerativas como no Alzheimer e na Doença de Parkinson. Outro exame que pode trazer informações importantes é a mensuração de isoprostanos na urina, substância produzida pela reação de radicais livres com ácido aracdônico (membrana celular), relacionado com a oxidação lipídica, que também evidencia um estado de estresse oxidativo.³⁰

CONCLUSÃO

Não existe um exame laboratorial ou um achado patognomônico no exame físico que confirme o diagnóstico de SO. Será necessário uma história minuciosa sobre a alimentação, intensidade e volume dos treinos e tempo de repouso. Avaliação da situação emocional atual do atleta sobre exigência de bons resultados, além de um exame físico minucioso. Deve-se solicitar os exames laboratoriais previamente citados e avaliar a possibilidade de um exame cardiovascular. Normalmente muitos sintomas podem estar presentes e eles são muito individuais, podendo haver casos de SO com sintomatologia completamente diferentes entre os atletas. Muitas vezes será necessário a avaliação de diversos profissionais da área médica. Porém, todos os atletas com SO apresentam diminuição da performance, fato esse que não é levado em consideração em muitos estudos, nos quais se baseiam apenas em alterações hormonais/bioquímicas, muitas vezes encontrados dentro dos parâmetros da normalidade. Portanto, a SO continua sendo um desafio diagnóstico, podendo muitas vezes simular outros tipos de doenças.

Todos os autores declararam não haver qualquer potencial conflito de interesses referente a este artigo.

CONTRIBUIÇÃO DOS AUTORES: FPS (0000-0002-1160-0963)* redator, contribuição substancial na concepção, análise dos dados para o trabalho; TMM (0000-0002-3609-8359)* interpretação dos dados para o trabalho; ALC.Jr. (0000-0001-6944-7773)* interpretação dos dados para o trabalho; EPB (0000-0002-3373-9317)* análise dos dados para o trabalho, revisão crítica. *ORCID (Open Researcher and Contributor ID).

REFERÊNCIAS

- Kreider R, Fry AC, O'Toole M. Overtraining in sport: terms, definitions, and prevalence. In:Kreider R, Fry AC, O'Toole M, editors. Overtraining in sport. Champaign (IL): Human Kinetics; 1998. p. VII–IX.
- Budgett R, Newsholme E, Lehmann M, Sharp C, Jones D, Jones T, et al. Redefining the overtraining syndrome as the unexplained underperformance syndrome. Br J Sports Med. 2000;34:67–8
- 3. Halson SL, Jeukendrup AE. Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med. 2004;34(14):967-81.
- 4. Matos NF, Winsley RJ, Williams CA. Prevalence of nonfunctional overreaching/overtraining in young English athletes. Med Sci Sports Exerc. 2011;43(7):1287-94.
- Koutedakis Y, Sharp NC. Seasonal variations of injury and overtraining in elite athletes. Clin J Sport Med. 1998;8(1):18-21.
- 6. Kreher JB, Schwartz JB. Overtraining syndrome: a practical guide. Sports Health. 2012;4(2):128-38.
- Raglin J. Overtraining and staleness: psychometric monitoring of endurance athletes. In: RN Singer, M Murphey, LK Tennant, editors. Handbook of Research on Sport Psychology. New York: Macmillan; 1993. p. 840–50.
- 8. Hiscock N, Pedersen BK. Exercise-induced immunodepression-plasma glutamine is not the link. J Appl Physiol (1985). 2002;93(3):813-22.
- Armstrong LE, VanHeest JL. The unknown mechanism of the overtraining syndrome: clues from depression and psychoneuroimmunology. Sports Med. 2002;32(3):185-209.
- Budgett R, Hiscock N, Arida RM, Castell LM. The effects of the 5-HT2C agonist m-chlorophenylpiperazine on elite athletes with unexplained underperformance syndrome (overtraining). Br J Sports Med. 2010;44(4):280-3.
- Halson SL, Lancaster GJ, Jeukendrup AE, Gleeson M. Immunological responses to overreaching in cyclists. Med Sci Sports Exerc. 2003;35(5):854-61.
- 12. Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45(1):186-205.
- Smith LL. Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc. 2000;32(2):317-31.
- 14. Brooks K, Carter J. Overtraining, Exercise, and Adrenal Insufficiency. J Nov Physiother. 2013;3(125).
- 15. Dressendorfer RH, Wade CE, Schaff JH. Increased heart rate in runners: a valid sign of overtraining? Physician Sportsmed. 1985;13(8):77-86.

- Stone MH, Keith RE, Kearney JT, Fleck SJ, Wilson GD, Triplett NT. Overtraining: a review of the signs and, symptoms and possible causes. J Appl Sport Sci Res. 1991;5(1):35-50.
- 17. Fry RW, Morton AR, Garcia-Webb P, Crawford GP, Keast D. Biological responses to overload training in endurance sports. Eur J Appl Physiol. 1992;64(4):335-44.
- 18. Lehmann M, Gastmann U, Petersen KG, Bachl N, Seidel A, Khalaf AN, et al. Training over- training: performance, and hormone levels, after a defined increase in training volume versus intensity in experienced middle- and long-distance runners. Br J Sports Med. 1992;26(4):233-42.
- Snyder AC, Kuipers H, Cheng B, Servais R, Fransen E. Overtraining following intensified training with normal muscle glycogen. Med Sci Sports Exerc. 1995;27(7):1063-70.
- Jeukendrup AE, Hesselink MKC, Snyder AC, Kuipers H, Keizer HA. Physiological changes in male competitive cyclists after two weeks of intensified training. Int J Sports Med. 1992;13(7):534-41.
- 21. Brechtel LM, Braumann KM, Wolff R. Time course of symptoms during the development of a parasympathetic overt- raining syndrome [abstract]. Med Sci Sports Exerc. 1999;31 Suppl:S176.
- 22. Lehmann M, Foster C, Keul J. Overtraining in endurance athletes: a brief review. Med Sci Sports Exerc. 1993;25(7): 854–62.
- Lehmann M, Petersen KG, Liu Y, Gastmann U, Lormes W, Steinacker JM. [Chronic and exhausting training in sports—influence of leptin and inhibin]. Dtsch Z Sportmed. 2001;51:234–43.
- Urhausen A, Gabriel H, Kindermann W. Blood hormones as markers of training stress and overtraining. Sports Med. 1995;20(4):251–76.
- Urhausen A, Gabriel H, Weiler B, Kindermann W. Ergometric and psychological findings during overtraining: a long-term follow-up study in endurance athletes. Int J Sports Med. 1998;19(2):114–20.
- 26. Gouarné C, Groussard C, Gratas-Delamarche A, Delamarche P, Duclos M. Overnight urinary cortisol and cortisone add new insights into adaptation to training. Med Sci Sports Exerc. 2005;37(7):1157–67.
- Kern W, Perras B, Wodick R, Fehm HL, Born J. Hormonal secretion during nighttime sleep indicating stress of daytime exercise. J Appl Physiol (1985). 1995;79(5):1461–8.
- 28. Duclos M. A critical assessment of hormonal methods used in monitoring training status in athletes. Int Sport Med J. 2008;9(2):56–66.
- 29. Gabriel H, Kindermann W. The acute immune response to exercise: what does it mean? Int J Sports Med. 1997;18(Suppl 1):528–45.
- Margonis K, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Douroudos I, Chatznikolaou A, et al. Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radic Biol Med. 2007;43(6):901–10.