WATER EFFECT VERSUS ANTISEPHTIC FOR PERIURETHRAL CLEANING IN THE PERFORMANCE OF INDWELLING URINARY CATHETERIZATION: A SYSTEMATIC REVIEW

Urinary tract infections related to indwelling urinary catheterization are among the most frequent in hospitals. There are many recommendations for the prevention of infections, but the need to use antiseptics for periurethral cleaning is still questioned. **Objective:** this study aimed to analyze the evidence on the theme in the literature. **Method:** a systematic review was performed using the following databases: Biblioteca Virtual em Saúde, Medline, Embase, Web of Science and Cumulative Index to Nursing & Allied Health Literature. Clinical trials were included which assessed the infection rates of the urinary tract/bacteriuria and which used antiseptic solutions and water in the periurethral cleaning. **Results:** of 211 studies, three were considered as methodologically adequate according to the Jadad Scale. All of the studies showed that there is no significant difference in the rates of UTI/bacteriuria when compared to the use of water with antiseptic (chlorhexidine or povidone-iodine). **Conclusion:** it was concluded that the use of water in the periurethral cleaning seems not to augment the risk of acquiring infections/bacteriuria.

Keywords: Urinary Tract Infections; Urinary Catheterization; Water; Chlorhexidine; Povidone-Iodine.

RESUMEN
As las infecciones del tracto urinario relacionadas con el cateterismo urinario permanente se encuentran entre las más frecuentes en hospitales. Existen varias recomendaciones para la prevención de infecciones, pero aún se cuestiona la necesidad de utilizar antisépticos para la limpieza periuretral. **Objetivo:** este estudio objetivó analizar las evidencias, en la literatura, acerca del tema. **Método:** se realizó una revisión sistemática utilizando las bases de datos Biblioteca Virtual en Salud, Medline, Embase, Web of Science y Cumulative Index to Nursing & Allied Health Literature. Se incluyeron ensayos clínicos que evaluaron las tasas de infección del tracto urinario/bacteriuria y que utilizaron soluciones antisépticas y agua en la limpieza periuretral. **Resultados:** de 211 estudios, tres fueron considerados metodológicamente adecuados de acuerdo con la Escala de Jadad. Todos los estudios mostraron que no hay diferencias significativas en las tasas de ITU/bacteriuria cuando se comparan el uso de agua con antiséptico (clorexidina o povidona-iodina). **Conclusión:** se concluyó que el uso de agua en la limpieza periuretral parece no aumentar el riesgo de adquirir infección/bacteriuria.

Palabras clave: Infecciones Urinarias; Cateterismo Urinario; Agua; Clorexidina; Povidona-Iodo.
against the protocols in the literature is not observed. It is the hygiene of the periurethral region is an important action. Water or with ordinary antiseptic soap, with 0.9% saline or recommended that the periurethral region be cleaned with chlorhexidine gluconate (CHG), soap and water, povidone-iodine (PVP-I) and sterile water, did not find statistically significant differences in the UTI-IUC rates. Thus, the stage of the IUC that contemplates DUC cleaning and also the need to look for evidence to support the practice in performing this procedure, the question is: Is the use of antiseptic solution more effective when compared to use of soap and water on periurethral cleaning prior to urinary catheter insertion in adult patients with a view to reducing urinary tract infection?

METHODOLOGY

This is a Systematic Review (SR) registered with PROSPERO International Prospective Register of Systematic Reviews (Registration number CRD42017055155).

The sages for the development of the SR were a) construction of the protocol; b) definition of the question; c) search for studies; d) selection of studies; e) critical evaluation of studies; f) data collection; g) data synthesis. The protocol was prepared by the researcher and contained the step-by-step review, objectives, inclusion and exclusion criteria, and search and analysis methods, among other information.

For the research question construction, the PICO strategy was used, which represents an acronym for patients, intervention, comparison and outcomes.

- P – Patients undergoing indwelling urinary catheterization;
- I – PVP-I or chlorhexidine;
- C – water;
- O – urinary tract infection;

Then the following question was asked: Is the use of antiseptic solution more effective when compared to the use of water and/or soap in periurethral cleaning prior to urinary catheter insertion in adult patients, with a view to reducing urinary tract infection?

The search for references was performed in *Biblioteca Virtual em Saúde* (BVS), US National Library of Medicine (PubMed), Web of Science and Cumulative Index to Nursing & Allied Health Literature (CINAHL), via the CAPES Portal, and in Embase, from December 2017 to January 2018. The following detailed search strategies were used in each database, as presented in Table 1.

<table>
<thead>
<tr>
<th>Base</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVS</td>
<td>("Cateterismo Urinario" OR "Cateterismo Urinario" OR "Urine Catheterization") AND ("Infecciones Urinarias" OR "Infecciones Urinarias" OR "Urine Tract Infections" OR "Infecciones do Sistema Urinário" OR "Infecciones del tracto urinario") AND (Água OR agua OR Water OR Sabões OR Jabones OR sabão OR Soaps OR MH: D01.475.557.500 OR "Povidone-Iodine" OR "Povidona Yodada" OR "Povidona-Iodo" OR "PVP-I" OR "PVPI" OR "Iodo Povidine" OR MH: D02.078.370.141.100 OR Chlorhexidine OR Clorhexidina OR Clorexidina)</td>
</tr>
<tr>
<td>PubMed</td>
<td>((("Urine Catheterization"[Mesh]) OR "Urine Catheterization"[Title/Abstract]) AND ((("Urine Tract Infections"[Meshexp]) OR "Urine Tract Infections"[Title/Abstract]) AND ((("Water"[Meshexp]) OR "Soap"[Meshexp] OR "Povidone-Iodine"[Mesh] OR "Chlorhexidine"[Mesh]) OR (("Water"[Title/Abstract] OR "Soap"[Title/Abstract] OR "Povidone-Iodine"[Title/Abstract] OR Chlorhexidine[Title/Abstract]) OR "PVP"[Title/Abstract] OR "PVP"[Title/Abstract]))</td>
</tr>
</tbody>
</table>
The evaluation of the methodological quality of the studies included in the SR was made using the Jadad scale, which consists of a numerical scale to assess the quality of randomization, masking and follow-up of patients included in clinical trials. Only studies with a Jadad score ≥ 3 were included in the SR.

RESULTS

Considering all the databases researched, 211 articles were obtained, which were exported to the EndNote Web bibliographic reference manager. After evaluation by EndNote Web, 104 articles were excluded because they were duplicates, leaving 107 to be evaluated according to title and abstract. 91 articles were excluded according to the exclusion criteria, leaving 16 for full reading. Of the 16 articles read in full, three were selected to compose the SR sample (Figure 1).

Three studies (100%) included in the SR had a score of ≥ 3 on the Jadad scale and were published between 2001 and 2009. Australia, China and Iran were the countries where the studies were conducted, all of which published in English.
Two were performed only with women and one study included patients of both genders.

All three studies (100%) compared the use of antiseptic solution and water for periurethral cleaning before urinary catheter insertion. The antiseptic solutions compared were 10% PVPI and 0.1% chlorhexidine. The water used in the research was sterile or tap water. The use of the aseptic technique for performing IUC was described in two articles.

There were differences in the criteria used to define UTI and bacteriuria. In two studies (66.7%), UTI was defined by the presence of more than 100,000 colony forming units per milliliter (CFU/mL) of urine. And in another (33.3%), UTI was defined by more than one thousand CFU/mL.

In two surveys (66.7%), the most prevalent isolated organism in urine cultures was *Escherichia coli* and, in another (33.3%), it was *Enterococcus*.

The methodological characteristics of the studies are detailed in Table 2.

All studies (100%) showed that there were no statistically significant differences in the incidence of bacteriuria and UTI, as shown in Table 3.

DISCUSSION

In accordance with the guiding question, the present investigation focused on periurethral cleaning prior to the insertion of the indwelling urinary catheter.

Table 2 - Presentation of the articles included in the systematic review regarding year/author, country, type of intervention, number of urine cultures, time to perform urine culture after IUC, definition criteria for bacteriuria or UTI, micro-organisms and Jadad scale

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Country</th>
<th>Type of intervention (number of patients)</th>
<th>Number of urine cultures</th>
<th>Time to perform urine culture after IUC</th>
<th>Criteria for defining bacteriuria or UTI (CFU/ml)</th>
<th>Most prevalent micro-organisms</th>
<th>Jadad Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasiriani et al., 2009<sup>15</sup></td>
<td>Iran</td>
<td>- Tap water (30) - 10% PVPI (30)</td>
<td>02</td>
<td>1st: 0h; 2nd: 24h</td>
<td>Bacteriuria: ≥10<sup>³</sup> UTI: ≥ 10<sup>⁵</sup></td>
<td>Escherichia coli. No differences between the groups</td>
<td>3</td>
</tr>
<tr>
<td>Cheung et al., 2008<sup>16</sup></td>
<td>China</td>
<td>- Sterile water (08) - 0.05% CHG (12)</td>
<td>04</td>
<td>1st: before catheter replacement 2<sup>nd</sup> 0h (after catheter change) 3<sup>rd</sup> 7 days 4<sup>th</sup> 14 days</td>
<td>High symptomatic bacteriuria: >10<sup>⁵</sup> Low symptomatic bacteriuria: ≤10<sup>³</sup></td>
<td>Escherichia coli. No differences between the groups</td>
<td>3</td>
</tr>
<tr>
<td>Webster et al., 2001<sup>17</sup></td>
<td>Australia</td>
<td>- Tap water (219) - 0.1% CHG (217)</td>
<td>01</td>
<td>24h</td>
<td>UTI: ≥ 10<sup>⁵</sup></td>
<td>Enterococcus. No differences between the groups</td>
<td>5</td>
</tr>
</tbody>
</table>

Source: Review data.

Table 3 - Presentation of the articles included in the systematic review regarding authors/year, population, interventions, results, and conclusions

<table>
<thead>
<tr>
<th>Authors/Year</th>
<th>Population (age mean)</th>
<th>Sample</th>
<th>Interventions</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasiriani et al., 2009<sup>15</sup></td>
<td>Women undergoing gynecological surgery (48.18)</td>
<td>60</td>
<td>100% PVPI (n=30)</td>
<td></td>
<td>The use of antiseptics does not seem to reduce UTI and Bacteriuria rates</td>
</tr>
<tr>
<td>Cheung et al., 2008<sup>16</sup></td>
<td>Patients of both genders in home care (78.4)</td>
<td>20</td>
<td>0.05% CHG (n=8)</td>
<td></td>
<td>Using sterile water for periurethral cleaning in home patients does not increase the risk of UTI</td>
</tr>
<tr>
<td>Webster et al., 2001<sup>17</sup></td>
<td>Obstetric patients (28.06)</td>
<td>436</td>
<td>0.1% CHG (n=217)</td>
<td></td>
<td>Periurethral cleaning with antiseptic does not decrease bacteriuria rates and is probably not necessary</td>
</tr>
</tbody>
</table>

Source: Review data.
There is a strong recommendation that daily urinary meatus cleaning should be performed routinely in the patient’s hygiene, without the need for antiseptic solutions. However, regarding periurethral cleaning prior to the insertion of the indwelling urinary catheter, the need for antiseptic solutions is still questioned.

The three RCTs included in this study showed that the use of water for periurethral cleaning prior to the insertion of the indwelling urinary catheter, when compared to the use of antiseptic solutions, does not increase the rates of UTI and bacteriuria.

Similar findings have been reported by authors who compared clean and sterile techniques for performing the DUC and in clinical trials conducted with children.

In a cohort whose periurethral cleaning was performed with 10% PVPI compared with soap and water, there was a 5.01-fold risk of acquiring UTI when no antiseptic solution was used. However, the length of stay of the urinary catheter of the patients in this study and of the patients approached in this review should be considered.

Urinary catheter length of stay is the major risk factor for UTI. In the cited cohort, urinary catheter permanence time was 11.39 days, while in the studies involved in this research it was one day and seven days.

Also related to the catheter length of stay, the risk of developing bacteriuria increases by 3 to 7% each day. Although most studies have evaluated the incidence of bacteriuria with a similar time (24h after urinary catheter insertion), there were differences in the criteria for defining bacteriuria.

The criteria for defining bacteriuria and UTI differed in the studies included in this paper. The differences were in terms of both nomenclature and counting of colony forming units in the urine cultures.

Cheung’s study addressed symptomatic bacteriuria as an outcome, being classified as high (>10^5 CFU/mL) and low (<10^5 CFU/mL).

The literature addressed the UTI, but with different counts in urine culture: UTI ≥10^5 CFU/mL and UTI ≥10^3 CFU/mL respectively. This difference in the criteria for defining the study outcomes did not allow for a meta-analysis to be performed, which would enable a more consistent result to be presented.

Regarding the causative agents of UTI, in two studies the most prevalent microorganism was Escherichia coli. Gram-negative bacilli are the main causes of UTI, including Escherichia coli. The microorganisms present in the periurethral region may ascend to the bladder at the time of urinary catheter insertion, which reinforces the importance of hygiene.

It is noteworthy that in the three RCTs evaluated there were no statistically significant differences between the microorganisms found in urine cultures. Therefore, it can be inferred that in the short-term performance of the IUC, the use of antiseptic solutions does not appear to reduce the risk of inoculation of periurethral colonizing bacteria.

Thus, using water for periurethral cleaning prior to urinary catheter insertion may be an effective, less expensive alternative, less likely to irritate and burn the skin and to allow for the emergence of chlorhexidine resistant microorganisms and colistin.

The authors of this investigation believe that, if periurethral cleaning prior to catheter insertion is performed using a standardized technique with water prior to the insertion of the indwelling urinary catheter, it does not place the patient at increased risk for UTI or bacteriuria.

Our findings, coupled with the impossibility of performing meta-analysis and the lack of information comparing solutions for periurethral cleaning prior to urinary catheter insertion in adults of both genders, demonstrate the need for further primary studies on this subject.

CONCLUSION

The use of water for periurethral cleaning prior to the insertion of the indwelling urinary catheter seems to be an effective, safe and more economical alternative to perform the indwelling urinary catheterization.

REFERENCES

Water effect versus antiseptic for periurethral cleaning in the performance of indwelling urinary catheterization: a systematic review

