Spinal epidural abscess in adolescence: case report

Aléxia Alves Cabral
Cecília Pereira Silva
Amanda Freire de Almeida
Christian Candido Ferreira
Ricardo Kalil Laviola
Gabriel Kalil Laviola Oliveira e Silva

Abstract

Spinal epidural abscess (SEA) is a rare infectious emergency and capable of causing severe neurological deficits, especially in childhood. The mortality rate in adults varies from 5 to 23%, but in children the rates are even lower. This report aims to contribute to the scientific field by discussing a case of SEA in pediatrics. It is a teenager, 17 years old, presenting fever, low back pain and sebaceous cyst infected on her back for three days. She reports a history of drainage two days ago and a cesarean section with spinal anesthesia a year ago. Magnetic resonance imaging (MRI) of the lumbar showed posterior L1-L4 epidural collection. Epidural abscess drainage surgery was performed, with L3-L4 laminectomy, and positive culture for Methicillin-resistant Staphylococcus aureus (MRSA), sensitive to Vancomycin and Rifampicin. She was discharged after 21 days of intravenous Vancomycin, with a prescription for oral Rifampicin for three weeks. Previous skin infection is considered a classic precedent of SEA, suggesting that the patients condition was preceded by furunculosis. The microorganism responsible for 86% of SEA cases in childhood is Staphylococcus aureus. Back pain after spinal anesthesia, fever, skin infection and possible condition of immunosuppression indicated investigation for SEA. Gadolinium-contrast MRI corresponds to the gold standard diagnostic approach for SEA. The suspcion of the disease in pediatrics is extremely important in front of fever, back pain and spinal sensitivity, and should receive due attention and investigation before an indicative clinic.

Keywords:
Epidural Abscess
Anesthesia
Spinal
Adolescent.
INTRODUCTION

Spinal epidural abscess (ESA) is considered an infrequent, potentially serious infectious emergency, capable of causing severe neurological deficits, resulting from compression of the abscess in the spinal cord or nerve roots, which can lead to ischemia, especially if there is a delay in the diagnosis, and an early clinical and surgical approach is essential for a better prognosis.\(^1\)-\(^3\)

It is characterized by a purulent collection, located between the dura mater and the vertebral canal, which may manifest as a sebaceous cyst and extend along the entire length of the spinal cord.\(^4\)-\(^5\)

Its incidence varies, in the literature, from one case per 100,000 individuals to 0.2 to three cases in 10,000 hospital admissions, consensually being considered a rare condition, especially in childhood.\(^1\),\(^4\)-\(^6\),\(^7\). The mortality rate in adults ranges from 5 to 23%, but in children, morbidity and mortality is lower.\(^6\)

The present report aims to contribute to the scientific scope with the discussion of a case of ESA in pediatrics, improving data already found in the literature.

CASE DESCRIPTION

Adolescent, female, 17 years old, hospitalized complaining of fever (38.5ºC), headache, low back pain radiating to the abdomen and infected sebaceous cyst in the upper third of the posterior part of the thorax, which had started three days ago. He informs that he performed the cyst drainage procedure manually, at home, five days ago and, in the emergency room, 48 hours before admission, with a prescription of oral Cefadroxil (500mg every 12hrs). During hospitalization, he reported onset of intermittent local low back pain two months after cesarean section, which occurred a year ago, with spinal anesthesia.

On physical examination, he weighed 115 kg, BMI 39.7 (above P97), facial pain, tachypnea, with diffuse lumbar and abdominal pain on palpation, more pronounced in the right hypochondrium.

Laboratory tests showed blood count with Hb 11.5g/dL; Ht 34%; leukocytosis with a left shift (16,000/mm\(^3\), 13% rods and 80% segmented), platelets 168,000/mm\(^3\); C-reactive protein (CRP) 292mg/dL; erythrocyte sedimentation rate (ESR) 130mm and two negative blood cultures. Tomography of the abdomen, thorax and skull, abdominal and pelvic ultrasound without alterations.

Intravenous treatment was initiated with Ceftriaxone (2g every 12 hours), Oxacillin (1g every 6 hours), Metronidazole (500mg every 8 hours).

On the fifth day of hospitalization, she had a blood count with Hb 11.9g/dL; Ht 35%; leukocytes (12,000/mm\(^3\), 4% rods, 70% segmented), CRP 292mg/dL; erythrocyte sedimentation rate (ESR) 130mm and two negative blood cultures. Tomography of the abdomen, thorax and skull, abdominal and pelvic ultrasound without alterations.

DISCUSSION

Among the predisposing factors for the development of SEA are spinal trauma, spinal anesthesia or epidural block, previous neurosurgery, congenital spinal anomalies, previous skin infection/osteomyelitis, cancer, abusive use of intravenous drugs, history of acupuncture, diabetes mellitus, chronic renal failure, recurrent urinary tract infection, alcoholism and immunodeficiency.\(^2\),\(^5\),\(^6\),\(^8\),\(^9\)

Such factors were found in only 35 to 67% of pediatric patient with ESA.\(^1\)
Regional anesthesia is becoming more common in children. One should evaluate the advent of possible complications, such as bacterial infections due to catheter contamination, which correspond to 16 to 25% of cases of spinal anesthesia, and other more serious and less common ones, such as meningitis, epidural abscess and sepsis. Wiegle et al. (2018)10 also report that subcutaneous insertion of the catheter or at a higher point, between L5-S1, may lead to a lower risk for these infections.

It is rare for ESA to appear in immunocompetent children who do not have risk factors5, which suggests that the patient had an immunodeficiency condition due to her obesity condition, which, together with her history of spinal cord anesthesia, favored the development of the ESA.

Previous skin infection is considered a classic preceding presentation of ESA, despite occurring in only 15% of cases5. The most common route of dissemination in children is hematogenous, followed by contiguity1. Therefore, it is suggested that the patient’s ESA condition was preceded by spinal column furunculosis.

The microorganism responsible for 50-90% of cases of ESA is Staphylococcus aureus, both methicillin-sensitive (MSSA) and resistant (MRSA) strains9, being the most common etiological agent in pediatric infections, in 86% of cases. Recent studies have observed an increase in MRSA etiologies in children without risk factors2,5. Consistent with reports in the literature, MRSA was found in the secretion culture of the patient in question.

It is recommended that Vancomycin be the antibiotic of choice for the treatment of ESA, with a duration of 4 to 6 weeks, as was done in the patient. Early treatment is essential for better control of the infection2,4.

The classic presentation of SEA consists of the triad of back pain, fever and neurological deficit. However, only a minority of patients will manifest it, especially the pediatric age group, which usually does not have risk factors or a clear clinical picture2,3.

Severe pain located in the back is the most frequent and often underestimated symptom, and a more accurate investigation should always be carried out, with laboratory and radiological exams5,4. The high incidence of back pain in the population, associated with the rare occurrence of SEA, makes its early diagnosis difficult4. Furthermore, ESA should also be suspected in febrile children with abdominal or hip pain, after ruling out other etiologies, as there are reports of acute abdominal pain disguising a possible ESA4,11. Post-spinal anesthesia back pain and fever, together with subsequent skin infection and possible immunosuppression condition, indicated investigation for ESA.

The neurological symptoms of AEE are divided into four stages: (1) low back pain at the level of the affected spinal region, fever and local tenderness; (2) radicular pain, neck stiffness and altered reflexes; (3) motor weakness, sensory deficit and bladder and bowel dysfunction and (4) paralysis, with possible permanent sequelae, rarely reversible after surgical approach4,6,9. Our patient was in stage 3, due to the presence of neurogenic bladder, grade 4 paraparesis and persistence of back pain even with flexion/extension of the spine, characterizing a picture of bladder dysfunction, motor weakness and spinal stenosis due to an inflammatory process.

The ESA has a rapid progression, with evolution from radicular symptoms to neuromuscular weakness in around three to four days and from weakness to paraplegia in 24 hours. In children, the diagnosis is often delayed until neurological signs manifest, 75% of the time. It is important to consider the diagnosis of SEA in patients who have back pain, fever and spinal cord sensitivity, with or without an altered neurological examination, in order to prevent neurological sequelae, paralysis, sepsis and death4,8.

The diagnosis is made by clinical suspicion, accompanied by an increase in ESR and CRP and neurological imaging showing the abscess2, with all these elements present in the case.

Magnetic resonance imaging (MRI) with gadolinium contrast is the gold standard diagnostic approach for SEA, with 91% sensitivity and specificity, in addition to being relevant for follow-up1,3,6,12. Intravenous contrast-enhanced tomography has very low sensitivity for the detection of SEA and should only be requested if MRI is not available3. The MRI requested for the patient was essential for diagnostic confirmation.

Treatment is traditionally based on surgical decompression and drainage, plus antibiotic therapy1,3,6. Recent reports demonstrate that the use of antibiotics alone can produce satisfactory regression of the condition2. Sugawara et al. (2019)1 recommend only clinical treatment, initially, in pediatric patients who do not have risk factors and who have been diagnosed before the onset of neurological symptoms, inferring that, for the patient, both surgical and clinical approaches were necessary.

Children have better resolution of the ESA, compared to adults, since, for them, the condition is aggravated by risk factors. In a study with a case series of 34 children with ESA, none evolved to death and only 18% had neurological sequelae11, a fact that is in line with the good resolution of the patient’s condition.

CONCLUSION

ESA is uncommon in pediatrics and requires early diagnosis and treatment in order to provide the patient with a better prognosis. The suspicion of SAA in pediatrics is extremely important in the face of fever, back pain and radicular symptoms. Being the gold standard method, MRI has the ability to reveal the extent of the lesion and confirms the clinical suspicion. The initiation of antibiotic therapy, complementary to surgical drainage, are safe and efficient approaches for the prevention of neurological sequelae. Therefore, the AEE should receive due attention and investigation in the face of indicative clinical signs.
REFERENCES


